摘要: 给水处理是指运用各种水处理技术去除水中有关杂质,详细介绍几种常见的水处理技术:混凝技术、过滤技术、吸附技术、膜分离技术以及消毒技术,分析各技术去除水中杂质的作用原理及应用范围。 

  关键词: 混凝;过滤;膜分离;消毒 

  中图分类号:X7 文献标识码:A 文章编号:1671-7597(2011)0210077-01    

  由于水是一种溶解力很强的溶剂,又与外界环境如空气、地壳、土壤等广泛接触,故而水中必然含有很多杂质,而水的处理或者净化其实质就是通过各种水处理技术去除水中有关杂质,以获得达到一定水质标准的水供生活饮用或工业使用。水处理技术包括混凝、过滤、吸附、膜分离和消毒等。 

  1 混凝技术 

  混凝技术的处理对象是水中的悬浮物和胶体物质,其关键技术是选择和投加适当的混凝剂,经混凝过程使水中悬浮物和胶体形成大颗粒絮凝体,然后通过澄清、沉淀进行分离。历史上很早以前就有以明矾净水的记载,直至今日,我国的水厂大都采用铝盐或铁盐作为无机混凝剂,近年来也研究开发和应用了一些新的混凝剂如无机聚合态的聚合氯化铝(PAC)和聚合硫酸铝(PAS)等,也包括一些有机高分子絮凝剂如聚丙烯酰胺(PAM)等。 

  给水和废水的处理过程中,为了满足用水水质和环境排放的要求,一般在预处理中采用混凝沉淀法,即向水中投加混凝剂或絮凝剂以破坏溶胶稳定性,使水中的胶体和悬浮物颗粒絮凝成较大的絮凝体,以便从水中分离出来,达到水质净化的目的。混凝处理实际上包括凝聚和絮凝两种胶体颗粒物的聚集过程,是一种较为经典的水处理工艺,应用十分普遍。近年来,在絮凝动力学、絮凝形态学、新型高效混凝剂以及高效絮凝反应器等方面的研究和应用,有了许多新的发展,推动了混凝技术的进步。 

  2 过滤技术 

  过滤技术是选择和利用多孔的过滤介质(或称滤料截面)使水中的杂质得到分离的固液分离过程。它通常与混凝、澄清或沉淀结合使用,这样不仅能有效的降低水的浊度,而且对去除水中某些有机物和细菌、病毒也有一定的效果,因此,在生活饮用水处理中,过滤是必不可少的,在大多数工业用水处理中也常采用作为预处理过程。根据过滤技术的特点可知,在过滤技术中选择适当的过滤介质-滤料是极为重要的,目前常用的过滤介质--滤料从砂、无烟煤、微孔塑料、陶瓷,到各种高分子分离膜等可以有多种选择,它们可以去除水中不同粒度的杂质,此外,通过对过滤器进行优化设计可对过滤效果产生较大的影响。 

  原水经过混凝澄清处理以后,大部分悬浮物已被去除,但此时水质仍无法满足饮用水标准和后续处理工艺的水质要求,所以在常规水处理工艺中,过滤常被安排在沉淀池或澄清池之后,经过滤后的出水浊度可以降到小于1单位。在原水浊度较低时(25单位以下),也可采用不经澄清直接过滤。 

  3 吸附技术 

  吸附是一种物质附着在另一种物质表面的过程,他可以发生在气--液、气--固和液--固两相之间,在水处理中主要讨论物质在水与固体吸附剂之间的转移过程。许多多孔的固相物质可以作为吸附剂,例如活性炭、木屑、活化煤、焦炭、吸附树脂等,其中以活性炭使用作为广泛。吸附剂表面的吸附力可分为分子引力(范德华力)、化学键力和静电引力三种,故而吸附可分为物理吸附、化学吸附和离子交换吸附。影响吸附的因素很多,主要有吸附剂、被吸附物质的性质和吸附过程操作条件等,吸附剂的性质又可分为吸附剂微孔的大小、比表面积以及其表面化学特性等。吸附过程操作条件主要与pH值、温度、接触时间等因素有关。 

  活性炭吸附技术目前应用较多的是在给水处理中去除微量有害物质和嗅味等,尤其是去除水中有机污染物效果较好,因而可单独或与臭氧结合用于给水深度处理。此外,活性炭吸附在废水处理中也有广泛的应用。近年来在新的吸附剂方面又发展了有关的离子交换树脂和KDF等吸附剂已在给水处理中应用较广,值得重视。 

  4 膜分离技术 

  膜分离技术是利用特殊的有机高分子或无机材料制成的膜将溶液隔开,使溶液中的某些溶质或水渗透出来,从而达到分离的目的。膜分离的优点是分离截面效果好,一般没有相的变化,设备容易操作,便于产业化等。当然,膜分离技术也存在一定的局限性,例如对待处理的原水水质要求严格,处理能力相对较小,需要注意膜的堵塞与清洗等,目前常用的膜分离技术主要有反渗透(RO)、电渗析(ED或ERD)、纳滤(NF)、超滤(UF)、和微滤(MF)等,主要用途也各不相同,ED或ERD的局限性是可去除带电杂志,但对病菌和大多数有机物效果较差;UF和MF去除颗粒直径较大,但运行时所需压力较低,膜的成本和运行费用较低;而RO和NF由于它们分离的颗粒直径小,对病菌、有机物和无机物均有较好的效果,因此具有较广泛的处理能力和应用范围,既可用于工业水处理,也可应用于饮用水处理,尤其是近几年发展迅速的NF技术,因其运行压力较低,膜的成本和运行成本大幅减少,目前正成为水处理中优先发展的技术和领域。由于水资源紧缺是21世纪全球的一个突出矛盾,而且近年来相关法律法规不断完善与严格,水质分析检测技术不断改进,膜的生产成本及销售价格有下降趋势,因此,膜技术在水处理方面必将得到越来越广泛的应用。 

  5 消毒技术 

  水的消毒主要是为了杀灭或抑制水中对人体有害的致病微生物。水的消毒技术可分为化学消毒和物理消毒两大类,化学消毒中采用的消毒剂又可分为氧化型消毒剂和非氧化型消毒剂,氧化型消毒剂中应用最广的是氯及其制品,这是由于氯的价格低廉、消毒效果良好、使用较方便等特点,在非氧化型消毒剂中如季铵盐等在工业冷却水的杀菌,灭藻中应用较多。物理消毒中应用较多的是臭氧消毒和紫外线消毒,臭氧消毒的特点是杀菌效果好,不需很长的接触时间,受水中的PH值和氨氮影响较小,能通过强氧化作用消除水中的有机物,对水中的铁、锰、色度和嗅味也有一定的去除效果,其缺点是耗电较多,运行费用高,同时,臭氧需边生产、边使用,不易存储;紫外消毒的缺点是消毒作用有一定的作用距离和范围,当水中的悬浮物和浊度高时会妨碍紫外线的透射等。 

  近年来以氯为主要消毒剂已发展了一些新品种,如二氧化氯(ClO2)、 

  氯代异氰酸盐(TCCA与DCCA)以及一些加氯的增效剂,如等三嗪类化合物等,此外,含溴的消毒剂也有相应的发展,在非氧化型消毒剂中出现了异噻唑啉酮、季铵盐等新品种。物理消毒中臭氧和紫外消毒也发展较快,这可能和加氯后产生消毒副产物有关,如卤代甲烷类化合物等,有的已确认为致癌物而引起广泛关注,因此非氯消毒剂也有很大的发展前景。 

  6 结语 

  给水处理技术的目的是通过各种必要的处理技术改善原水水质,使他们符合生活饮用或工业使用的要求,因此水处理需要根据原水水质和出水水质的要求加以确定,为了达到处理的要求,应根据实际情况选用合适的技术,有时往往将几种处理技术结合或复合使用。 

  参考文献: 

  [1]刘洪涛、徐冠华、朱果逸,先进水处理技术研究进展[J].水处理技术,2008,34(4):1-7. 

  [2]汪恂、宛海燕,微污染水源水处理技术的现状与发展[J].山西建筑,2008,34(32):20-21.